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Darboux-integrable nonlinear Liouville –von Neumann equation

Sergei B. Leble* and Marek Czachor†

Katedra Fizyki Teoretycznej i Metod Matematycznych, Politechnika Gdan´ska, ul. Narutowicza 11/12, 80-952 Gdan´sk, Poland
~Received 24 July 1998!

A new form of a binary Darboux transformation is used to generate analytical solutions of a nonlinear
Liouville–von Neumann equation. General theory is illustrated by explicit examples.
@S1063-651X~98!08512-2#

PACS number~s!: 05.30.2d, 05.45.1b
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I. INTRODUCTION

Nonlinear operator equations one encounters in quan
optics and quantum field theory are typically solved by te
niques which are either perturbative or semiclassical~cf.
@1,2#!. The situation is caused by the fact that analytic me
ods of dealing with ‘‘non-Abelian’’ nonlinearites are still at
rather preliminary stage of development. An important s
towards more efficient analytical techniques is associa
with the notion of an inverse spectral transformation. T
use of the method in the context of matrix equations can
found in @3–5# where an analytical treatment of Maxwel
Bloch equations is given. In application to the Maxwe
Bloch system describing three-level atoms interacting w
light @6# one makes use of a degenerate Zakharov-Sh
spectral problem with reduction constraints@7#. The same
problem is used in the context of the complex modifi
Korteweg–de Vries equation for a slowly varying envelo
of electromagnetic field in an optical fiber@8#.

A technical complication occurs if a solution obtained
an inverse method should additionally satisfy some c
straint. For example, it is often essential to guarantee tha
solution one gets is Hermitian or positive. Difficulties of th
kind were one of the motivations for the development of n
Darboux-type operator techniques of solving non-Abel
equations. Particularly useful turned out to be the method
elementary and binary Darboux transformations introdu
by one of us@9–11#. These particular versions of the Da
boux transformations are more primitive than the ordin
ones@12# in the sense that the latter can be obtained by th
composition. The so-called binary transformation, a resul
an application of two mutually conjugated elementary D
boux transformations one after another, was successfully
plied to a three-state Maxwell-Bloch system with degener
in @9#, and various multisoliton solutions, including the we
known 2p-pulse and breathers, were found.

In this paper we apply a generalization of this techniq
@11# to a new type of nonlinear Liouville–von Neuman
equation, formally similar to the Euler-Arnold~EA! equation
for a Lie-algebraic generalized Euler top~see the Appendix!.
What is perhaps more important, the technique we discus
applicable to a large class of nonlinear Hartree-type eq
tions obtained by truncating a Taylor-type expansion o
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nonlinear effective HamiltonianĤ(r) to the first nontrivial
term ~linear in r).

To begin with, let us recall that the well-know
Liouville–von Neumann equation~LvNE!

i ṙ5@H,r#, ~1!

whereH is a Hamiltonian operator,r is a density matrix, and
the dot denotes the time derivative, is linear. In Hartree-ty
theories one considers more general, nonlinear equation
the form

i ṙ5@H~r!,r#, ~2!

whereH(r) is a nonlinear Hamiltonian operator. Both kind
of nonlinear LvNE’s can be written in either Lie-Poisso
@13,14# or Lie-Nambu forms@15–19#. The Lie-Nambu ver-
sion involves a three-bracket and the LvNE’s can be writ
as

i ṙa5$ra ,H1 ,2S2/2%5$ra ,H1%, ~3!

where $•,•%ª$•,•,2S2/2% is a Lie-Poisson bracket. Her
raªrAA8(a,a8) are components ofr in some basis,A and
A8 are discrete~say, spinor! indices anda, a8 are the con-
tinuous ones.H15Tr(rH) is a Hamiltonian function andS2
is theq52 case of the generalizedq entropy of Tsallis@21#
and Daro´czy @22# @for an arbitraryqPR the entropy isSq
5@12Tr(rq)#/(12q)].

An extension from a Lie-Poisson bracket to a thre
bracket led Nambu to a generalization of classical Ham
tonian dynamics@23#. The three-bracket equation~3! natu-
rally leads to the question of possible Nambu-ty
extensions of the Lie-Poisson dynamics of density matric
An interesting class of such generalizations occurs if o
keeps the Hamiltonian function linear inr but takesSq with
other values of the Tsallis parameterq. The equations so
obtained are rather unusual from the point of view of gen
alized Nambu-Poisson theories@24–34#. The peculiarity is
that although the three-bracket itself does not satisfy the
called fundamental identity, typically regarded as a Nam
analog of the Jacobi identity, but the two-bracket defined
$•,•%H1

ª$•,H1 ,•% does satisfy the ordinary Jacobi identi

if H1(r) is a linear functional ofr @18#. The choice of linear
H1 and generalizedSq can be also motivated by difficultie
with probability interpretation of generalized observab
since there is nophysicallynatural definition of spectrum o
7091 © 1998 The American Physical Society
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7092 PRE 58SERGEI B. LEBLE AND MAREK CZACHOR
nonlinear operators@16,35,36#. Moreover, it can be shown
that the link with Tsallis generalized statistical physics
even deeper than what we have written so far. It turns
that the same nonlinear LvNE would have been obtaine
we had kept the standard Lie-Poisson structure unchan
but used the Tsallisq averagê H&q5Tr(rqH) as the Hamil-
tonian function. A more detailed analysis of the connect
between theq-generalized LvNE and generalized statistic
physics will be discussed elsewhere@37#.

The nonlinear LvNE corresponding to the brack
$•,^H&1 ,Sn% is, up to constant factors,

i ṙ5@H,rn21#, ~4!

and was introduced in@16#. General properties of such equ
tions were discussed in@17# and @18#. It was shown, in par-
ticular, that spectra of their Hermitian Hilbert-Schmidt sol
tions are time independent. This opens a possibility o
density matrix interpretation of the solutions. Let us note t
for r25r ~pure states! the equations reduce to the line
LvNE and, therefore, the pure state dynamics is indis
guishable from the ordinary linear Schro¨dinger one.

Equation ~4! is directly related to general Hartree-typ
equations. Indeed, let us take a nonlinear operatorĤ(r) and
consider its Taylor-type expansion

Ĥ~r!5H01ArB1B†rA†1~higher-order terms). ~5!

The simplest linear term is just a symmetrized product
some HermitianA andr, i.e.,

Ĥ~r!5H01Ar1rA1~higher-order terms). ~6!

In such a case the Hartree equation is, up to the first cor
tion,

i ṙ5@H0 ,r#1@A,r2#. ~7!

The aim of this paper is to describe an algebraic method
leads to solutions of such nonlinear equations. The met
we shall propose is simultaneously applicable to all Hart
equations with Hamiltonians whose leading nonlinear c
rection is

Anr1An21rA1An22rA21¯ . ~8!

As our first step we will show how to solve a slightly mo
general equation

i ṙ5@H,r2#1 ir8H1 iHr8, ~9!

where the prime denotes a derivative with respect to so
additional parametert. The solutions of Eq.~9! that satisfy
the constraint

r8H1Hr850 ~10!

will be the ones we are interested in. The question of how
solve equations corresponding to arbitrary values ofq is still
open.

We will generate the solutions from a Lax pair with th
help of a binary Darboux transformation. To avoid tech
calities we will generally assume that the HamiltonianH and
ut
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other operators are finite-dimensional matrices, but the tra
formation works in a much more general setting, as sho
on the example of the harmonic oscillator. This example
partly infinite dimensional in the sense that the Hilbert spa
is infinite dimensional but the density matrix has a fin
number of nonvanishing eigenvalues. The application of
technique to general infinite-dimensional systems is a sub
of current study. Let us note that we can immediately obt
‘‘truly’’ infinite-dimensional solutions if we relax the posi
tivity, Hermiticity, or trace-class constraints typical of de
sity matrices. Of some interest may be the fact that our te
nique can be applied also to the linear LvN equation.

II. LAX PAIR AND ITS DARBOUX COVARIANCE

The technique of Darboux-type transformations is perh
the most powerful analytical method of solving differenti
equations. Although it was developed mainly in the cont
of nonlinear equations, it isimplicitly used also in standard
textbook quantum mechanics under the name of the crea
annihilation operator method. The method of creation ope
tors is simultaneously a good illustration of the way the D
boux technique works. In short, to use the method one ha
begin with an initial solution which is found by other mea
~a ‘‘ground state’’!. Then one has to find a ‘‘creation opera
tor’’ and the Darboux transformation is a systematic pro
dure that allows one to do it. In linear cases once we h
these two elements, we are able to generate an entire Hi
space of solutions. In nonlinear cases the spaces of solu
are bigger and therefore a given ‘‘ground state’’ and a ‘‘c
ation operator’’ may generate only a subset of this space.
mainly for this reason that much effort was devoted to fin
ing different generalizations of Darboux transformations~cf.
@12#!. The method we will use was devised for noncomm
tative equations such as Heisenberg equations of motion.
construction given in@10,11# led to a transformation more
general than the one we use and its derivation from elem
tary transformations is somewhat tedious. However, o
one has our explicit form, one can check by a straightforw
calculation that the binary transformation indeed maps
solution into another. To make this paper self-contained
give the explicit proof in the Appendix.

Consider the following pair of Zakharov-Shabat equ
tions:

iw~m!85~U2mH !w~m!5:Zmw~m!, ~11!

i ẇ~m!5~UH1HU2mH2!w~m!, ~12!

5
1

m
~U22Zm

2 !w~m!, ~13!

where U and H are Hermitian matrices the dot and prim
denote, respectively, derivatives with respect to timet and
some auxiliary parametert, andm is complex. The solution
w(m) is also in general a matrix. We assume thatH is t and
t independent andU5U(t,t). The compatibility condition
for Eqs.~11!, ~12! is

iU̇ 5@H,U2#1 iU 8H1 iHU 8, ~14!



re

v

te

a-

rre

ce

is

u-

ner-

-

s

ns

rm
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and therefore the above pair is the Lax pair for Eq.~9! @38#.
We will stick to the notation withU instead ofr since non-
Hermitian and nonpositive solutions are also of some inte
andr will be reserved for density matrices.

We will need two additional conjugated problems

2 ic~l!85c~l!~U2lH !, ~15!

2 i ċ~l!5c~l!~UH1HU2lH2!, ~16!

2 ix~n!85x~n!~U2nH !, ~17!

2 i ẋ~n!5x~n!~UH1HU2nH2!, ~18!

each of them playing a role of a Lax pair for Eq.~9!.
Consider for the moment the following general Zakharo

Shabat problems:

i ]w~m!5~V2mJ!w~m!, ~19!

2 i ]c~l!5c~l!~V2lJ!, ~20!

2 i ]x~n!5x~n!~V2nJ!, ~21!

where] denotes a derivative with respect to some parame
We will take the binary transformation in the form

c@1#~l,m,n!5c~l!F12
n2m

l2m
w~m!

3~px~n!w~m!p!21x~n!G ~22!

5:c~l!F12
n2m

l2m
PG , ~23!

where p is a constant projector (]p50) and the inverse
means an inverse in thep-invariant subspace: (pxp)21pxp
5pxp(pxp)215p. The operatorP defined by Eq.~23! is
idempotent (P25P) but in general non-Hermitian.P satis-
fies the nonlinear master equation@39#

i ]P5~V2mJ!P2P~V2nJ!1~m2n!PJP. ~24!

The binary transformation implies the following transform
tion of the potential:

V@1#~m,n!5V1~m2n!@P,J#. ~25!

Applying this general result toV5U, J5H we get

U@1#~m,n!5U1~m2n!@P,H#. ~26!

The second triple of equations we have started with co
sponds toV5UH1HU andJ5H2. In this case

V@1#~m,n!5U@1#~m,n!H1HU@1#~m,n!. ~27!

This means that Eq.~26! guarantees simultaneous covarian
of the Lax pairs under the binary transformation~22!.

Another important feature of the binary transformation
the fact that forn5m̄ andpx(m̄)5pw(m)† the Hermiticity
of the potential is Darboux covariant, i.e.,
st

-

r.

-

U@1#~m,m̄ !†5U@1#~m,m̄ ! ~28!

if U†5U.
Using Eq.~24! one can show by a straightforward calc

lation ~see the Appendix! that the binary transformed

c@1#5cS 12
m̄2m

l2m
PD ~29!

indeed satisfies

2 ic@1#85c@1#~U@1#2lH !, ~30!

2 i ċ@1#5c@1#~U@1#H1HU@1#2lH2! ~31!

with U@1#5U@1#(m,m̄) and, therefore,

iU̇ @1#5@H,U@1#2#1 iU @1#8H1 iHU @1#8. ~32!

Subsequent iterations of the Darboux transformation ge
ate further solutions. Starting with a Hermitian solutionU we
obtain an infinite sequence of Hermitian solutionsU@1#,
U@2#, . . . satisfying TrU5Tr U@1#5Tr U@2# . . . .

III. COVARIANCE OF THE CONSTRAINT U8H 1HU 850

In order to generate solutions ofiU̇ 5@H,U2# one has to
maintain the constraintU8H1HU85U@1#8H1HU@1#8
5U@2#8H1HU@2#85 . . . 50. Starting with stationary so
lutions

iw~m!85zw~m!, ~33!

one finds thatU850 implies U@1#850. An alternative ap-
proach can be applied to Hamiltonians of the Dirac type

H5p•a1mb, ~34!

which satisfyH25E(p)21 and therefore imply

U@1#8H1HU@1#85U8H1HU81~m2m̄ !@P8,H2#

5U8H1HU8, ~35!

which makes the constraint hereditary.
In general, using Eq.~24!, one finds that the constraint i

hereditary if

@P'~U2mH !P2P~U2nH !P' ,H2#50, ~36!

whereP'512P.

IV. PARTICULAR CASES

In this section we shall discuss properties of solutio
corresponding to several choices of the initialU.

For some applications one can restrict the general fo
~22! by choosing
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p5S 1 0 . . . 0

0 0 . . . 0

A A A

0 0 . . . 0

D , w~m!5S w1 0 . . . 0

w2 0 . . . 0

A A A

wn 0 . . . 0

D ,

~37!

n5m̄ andx(m̄)5w(m)†. Denoting the first column inw(m)
by uw& one finds that

U@1#~m,m̄ !5U1~m2m̄ !@P,H#, ~38!

where

P5
uw&^wu
^wuw&

. ~39!

The transition from the column solutionuw& to Eq. ~37! is a
useful trick that allows one to consider expressions such
pwp which otherwise would not make any sense.

A. U25U, U850

This is an interesting case sinceU5U(t) is a solution of
the ordinary linear LvNE:

U~ t !5exp@2 iHt #U~0!exp@ iHt #. ~40!

Let us take a solution stationary with respect tot:

i uw~m!&85~U2mH !uw~m!&5zmuw~m!& ~41!

and define

uw̃&5exp@ iHt #uw&. ~42!

The Lax pair is now

zmuw̃&5~U~0!2mH !uw̃&, ~43!

i uw8 &5
1

m
~zm2zm

2 !uw̃& ~44!

with the solution

uw~ t,t!&5e2 i ~Ht1a t,t!uw~0,0!&, ~45!

wherea t,t5(1/m)zm(12zm)t1zmt. The projector~39! is t
independent and satisfies thelinear LvNE. This implies that
U@1# satisfies the same linear equation asU. The following
lemmas explain the origin of this effect. Consider the gene
P defined by Eq.~23! andV@1#5V@1#(m,n).

Lemma 1. ]P50 implies

V@1#25V21~m2n!@P~JV1VJ2nJ2!P'

2P'~JV1VJ2mJ2!P#. ~46!

Proof: Eq. ~24! implies

P~V2nJ!2~V2mJ!P5~m2n!PJP ~47!

and
as

al

~m2n!~PJPJ1JPJP2JPJ!

5@P,V#J1J@P,V#1mJ2P2nPJ2. ~48!

The latter formula leads directly to Eq.~46!.h
Lemma 2. AssumeP850 and Ṗ is given by Eq.~24!

with V5HU1UH, J5H2. Then

U@1#25U22~m2n!i Ṗ. ~49!

Proof:

2 iP'Ṗ52P'~UH1HU2mH2!P, ~50!

2 i ṖP'5P~UH1HU2nH2!P' , ~51!

and therefore

U@1#25U22 i ~m2n!~P'Ṗ1 ṖP'!5U22 i ~m2n!Ṗ.

h
An immediate consequence of Lemma 2 is
Lemma 3. Assume P850 and U25U. Then U@1#2

5U@1# if and only if i Ṗ5@H,P#, i.e., P satisfies the linear
LvNE.

B. CaseU22aUÞconst–1, †U22aU,H ‡50, U850

Let a be a real number.@U22aU,H#50 implies

U~ t !5exp@2 iaHt#U~0!exp@ iaHt#. ~52!

Repeating the steps from the previous subsection we ob
the Lax pair

zmuw̃&5~U~0!2mH !uw̃&, ~53!

i uw8 &5
1

m
~Da1azm2zm

2 !uw̃&, ~54!

where Da5U(0)22aU(0). The projector P is t indepen-
dent but possesses a nontrivialt dependence which follows
from the fact thatm2m̄Þ0. Define the function

Fa~ t !5^w~0,0!uexpS i
m2m̄

umu2
Dat D uw~0,0!& ~55!

satisfying

^w~ t,t!uw~ t,t!&5exp@ i ~ ā t,t2a t,t!#Fa~ t !, ~56!

wherea t,t5(1/m)zm(a2zm)t1zmt. We find finally

U@1#~ t !5e2 iaHt$U~0!1~m2m̄ !Fa~ t !21e2~ i /m!Dat

3@ uw~0,0!&^w~0,0!u,H#e~ i /m̄ !Dat%eiaHt ~57!

5:e2 iaHtU int~ t !eiaHt. ~58!

Let us note that what makesU@1#(t) nontrivial is essentially
the presence ofF(t) in the denominator. It is precisely thi
property of the binary Darboux transformation that is resp
sible for the soliton solutions in the Maxwell-Bloch case@9#.
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The situation would be of course much less complicate
we allowedH to be non-Hermitian since thenP would im-
mediately evolve in a nonlinear way~because of the non
trivial contribution from^wuw& in the denominator!. But then
the solutionU@1# would be also non-Hermitian. It is pre
cisely the Hermiticity constraint that does not allow for ge
eration of nontrivial solutions from the seed solutionsU sat-
isfying U25U.

V. EXAMPLES

We shall now demonstrate on explicit examples how
method works. We will concentrate on the first Darbo
transformationU@1#. Further iterations,U@2#, . . . ,U@n#,
are also interesting and their relation toU@1# is similar to
this between solitons and multisolitons. The problem will
discussed in a forthcoming paper. All explicit solutions w
give below have been obtained and checked by mean
Mathematica 3.0.

A. 333 matrix Hamiltonian, a51

Consider the Hamiltonian

H5S 0 1 0

1 0 0

0 0
1

A2

D , ~59!

and take m5 i ~for real m the binary transformation is
trivial!. We begin with
l

nd

f

if

-

e

of

U~0!5S 1

2
1

A2

2
0 0

0
1

2
2

A2

2
0

0 0
1

2

D . ~60!

U(0) does not commute withH but

U~0!22U~0!5U~ t !22U~ t !5
1

4S 1 0 0

0 1 0

0 0 21
D ~61!

does. The eigenvalues ofU(0)2 iH arez65(16 iA2)/2 and
z2 has degeneracy 2. The two orthonormal eigenvectors
responding toz2 are

uw1&5S 0

0

1
D , uw2&5

1

A2S eip/4

1

0
D . ~62!

Taking

uw~0,0!&5
1

A2
~ uw1&1uw2&), ~63!

we getF(t)5cosh(t/2) and the internal part defined by Eq
~58! is given explicitly by
U int~ t !5S 11A2

2
2

A2

11et
0

212 i

2A2 cosh~ t/2!

0
12A2

2
1

A2

11et

1

2 cosh~ t/2!

211 i

2A2 cosh~ t/2!

1

2 cosh~ t/2!

1

2

D . ~64!
e-
tain

m is
an

e
uffi-
e
f a
One can check by an explicit calculation that Eq.~58! with
Eqs.~59! and ~64! is a Hermitian solution of

iU̇ @1#5@H,U@1#2#. ~65!

Let us note that the solution~64! corresponds to an initia
condition U@1#(0) which is different fromU(0) and is no
longer block diagonal in the basis block diagonalizingH.
This is a consequence of the fact thatP is not block diagonal,
a fact that explains the importance of the degeneracy co
tion for z2 @had we chosenz1 we would have obtained a
~232!%1 block-diagonalP]. The eigenvalues ofU@1#(t)
are nevertheless the same as those ofU(0). This follows
immediately from the t independence of spectrum o
U@1#(t) and the fact thatU@1#(t) tends asymptotically to
i-

U(t) for t→1`. As a consequenceU@1#(t) is neither nor-
malized (TrU@1#Þ1) nor positive and hence cannot be r
garded as a density matrix. It is, however, very easy to ob
a density matrix solution once we knowU@1#(t). The prob-
lem reduces to generating a new solution whose spectru
shifted with respect to the original one by a number. This c
be accomplished by a gauge transformation. Indeed,

Ũ@1#5e22iLHt~U@1#1L1!e2iLHt ~66!

is also a solution of Eq.~65!, and its spectrum is shifted byL
with respect to this ofU@1#. Such positive solutions can b
regarded as non-normalized density matrices and are s
cient for a well-defined probability interpretation of th
theory. Let us finally note that the fact that spectrum o
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Hermitian solution is conserved by the dynamics is not ac
dental but follows from general properties of Lie-Nam
equations@17#.

B. 333 Hamiltonian with equally spaced spectrum

This example is an intermediate step towards a nonlin
generalization of the harmonic oscillator. Consider t
Hamiltonian (k, mPR)

H5S k1m 2m 0

2m k1m 0

0 0 k1m
D , ~67!

whose eigenvalues arek, k1m, k12m, and takem5 i . We
begin with a non-normalized density matrix

r~0!5S 1

2
~a1A4b1a2! 0 0

0
1

2
~a2A4b1a2! 0

0 0 c

D ,

~68!

satisfying

r~0!22ar~0!5r~ t !22ar~ t !5S b 0 0

0 b 0

0 0 c~c2a!
D .

~69!

Eigenvalues ofr(0)2 iH are z05c2 i (k1m), z65 1
2 @a

6Aa214(b2m2#)2 i (k1m). We need this spectrum t
satisfy a degeneracy condition:z05z1 or z05z2 with c real
i-

ar
e

and non-negative. Positivity ofr(0) requires also thata
.0, a2A4b1a2>0. We will require thatbÞ0 ~otherwise
we will not get a nontrivialr@1#) so that the parameter
finally satisfy 0,4m2,a214b,a2. Let us note thatc(c
2a)5b2m2 independently of the choice of sign in the d
generacy conditionz05z6 .

Denote byuk1m& the joint eigenstate ofH ~with eigen-
value k1m) and r(0)2 iH @with eigenvaluec2 i (k1m)];
the corresponding projector isPk1m5uk1m&^k1mu. Let
135uk&^ku1uk1m&^k1mu1uk12m&^k12mu, where the
three projectors project on eigenstates ofH. We can write

Da5b132m2Pk1m . ~70!

The two eigenstates corresponding to the degenerate e
value c2 i (k1m) are orthogonal. One of them is simpl
uw1&5uk1m&; the other one isuw2&5fkuk&1fk12muk
12m&, where the explicit form off j is for the moment
irrelevant. Now takeuw(0,0)&5Auw1&1Buw2&, uAu21uBu2

51. We find

Fa~ t !5e22bt@11~e2m2t21!uAu2#. ~71!

The above formulas can also be written as

H5 (
n50,m,2m

~k1n!uk1n&^k1nu, ~72!

r~0!5
a

2
~ uk&^ku1uk12m&^k12mu!1cuk1m&^k1mu

2
1

2
A4b1a2~ uk12m&^ku1uk&^k12mu!. ~73!

The solution is
ace which
r@1#~ t !5r~ t !12im@11~e2m2t21!uAu2#21F uBu2~f̄k12m1f̄k!~fk12m2fk!uk,t&^k12m,tu

1
1

A2
em2tAB̄~f̄k12m1f̄k!uk,t&^k1m,tu1

1

A2
em2tAB̄~f̄k12m2f̄k!uk12m,t&^k1m,tu2H.c.G , ~74!

whereuk1 j ,t&5e2 ia j t uk1 j &.

C. One-dimensional harmonic oscillator

We begin with the Hamiltonian

H5 (
n50

`

\vS 1

2
1nD U12 1nL K 1

2
1nU. ~75!

One can directly apply the construction from the above example. We have to choose some three-dimensional subsp
definesr(0). Setk5 1

2 1 l ( l , mPN), andm5 i /(\v). The solution is

r[1] ~ t !5r~ t !12im[11(e2vm2t21)uAu2] 21F uBu2(f̄k12m1f̄k)(fk12m2fk)uk,t&^k12m,tu

1
1

A2
evm2tAB̄(f̄k12m1f̄k)uk,t&^k1m,tu1

1

A2
evm2tAB̄(f̄k12m2f̄k)uk12m,t&^k1m,tu2H.c.G . ~76!
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r@1# has interesting asymptotic properties. AssumeAÞ0.
For t@0 r@1#(t)'r(t) which suggests that the nonline
effect is transient. However, fort!0

r@1#~ t !'r~ t !12im@~f̄k12m1f̄k!~fk12m2fk!

3uk,t&^k12m,tu2H.c.#. ~77!

It follows that the asymptotic dynamics ofr@1#(t) is linear
but aroundt50 some sort of ‘‘phase transition’’ occurs, an
the result of this transition is stable. Let us also note that
linear evolution is determined by exp(2iaHt) with uau.2m
andmPN . The choice ofa is related to the initial condition
We obtain, therefore, an effective nonlinear modification
frequency of the oscillator.

Let us finally makef j explicit. Assumel 50, m51, a
55, b524, z05z1 @i.e., c5(51A5)/2], A5B51/A2.
Now

r~0!5
5

2S U12L K 1

2U1U52L K 5

2U D1
51A5

2 U32L K 3

2U
2

3

2S U52L K 1

2U1U12L K 5

2U D , ~78!

uw1&5U3L , ~79!

2

nc
i-

d

a

hic
.
e
ti
e

f

uw2&52 iA31A5

6 U12L 1A 2

913A5
U52L . ~80!

Tr r(0)5(151A5)/2 and the eigenvalues ofr(0) are 4, 1,
and (51A5)/2.

D. Linear equation with nonlinear perturbation

Assumei ṙe5e@H,re
2# and define

r5exp@2 iHt #reexp@ iHt #. ~81!

Then,

i ṙ5@H,r#1e@H,r2#. ~82!

This is a Nambu-type equation obtained by taking a lin
Hamiltonian function H f5Tr(Hr) and S5Tr (r2)/2
1eTr (r3)/3, the average energy is, by definition̂H&
5Tr (Hr)/Tr r.

Returning to the example of the harmonic oscillator w
proceed as before but now we choosem5 i /(e\v). The so-
lution becomes
r[1] ~ t !5e2 i ~11ae!HtFr(0)12im„11(e2evm2t21)uAu2
…

21F uBu2(f̄k12m1f̄k)(fk12m2fk)uk&^k12mu

1
1

A2
eevm2tAB̄(f̄k12m1f̄k)uk&^k1mu1

1

A2
eevm2tAB̄~f̄k12m2f̄k!uk12m&^k1mu2H.c.G Gei ~11ae!Ht.

~83!
uce

of
as-
o-
a-
to

the
is
The asymptotic dynamics is again linear and the freque
shift is Dv5aev. Let us note that according to the defin
tion of ^H& the eigenvalues of energy should be assume
take values\v(1/21n) and not (11ae)\v(1/21n). This
point is essential for the probability interpretation of such
nonlinear theory.

E. Homogeneous modification of the equation

The equation we have solved is nonhomogeneous w
implies thatr°const•r is not a symmetry transformation
This fact makes it necessary to work with non-normaliz
density matrices. In order to obtain a homogeneous equa
one can utilize the fact that Tr(rn) is time independent~as a
Casimir invariant!. DefineC(r)5@Tr r/Tr (r3)#1/2 and con-
sider

i ṙ5C~r!@H,r2#. ~84!

The equation is one-homogeneous inr and its solutions can
y

to

h

d
on

be obtained by the substitutiont°C(r)t in the correspond-
ing formulas given above. The multiplication ofr by con-
stants is a symmetry operation so that we can easily prod
solutions satisfying Trr51. To get the equation from the
Nambu-type formalism one takesS(r)5 2

3 @Tr r Tr (r3)#1/2.

F. Two spin-1/2 particles

The above Nambu-type formalism implies that spectra
Hermitian solutions are time independent. In particular,
suming that the nonlinear dynamics is defined for a tw
particle system, the corresponding two-particle density m
trix has time-independent eigenvalues. When it comes
reduceddensity matrices of the one-particle subsystems
situation is less simple. Assume the two-particle system
described by the Hamiltonian

H5H1^ 111^ H2 . ~85!
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On the one hand, it is clear that traces of the reduced den
matrices are time independent. On the other hand, it can
shown@18# that

i
d

dt
Tr 1„~Tr 2r!2

…52 Tr 1„@ Tr 2~r2!, Tr 2~r!#H1…,

~86!

where Trk , k51, 2 are partial traces. Forr2Þr the right-
hand side of Eq.~86! dos not in general vanish and th
means that the eigenvalues of the reduced density m
Tr 2r can be time dependent. What is interesting the aver
energies of the subsystems do not change as both TH1
^ 1r and Tr1^ H2r are separately conserved. It follows th
although the two subsystems do not exchange average
ergy, they nevertheless exhibit some kind of collective
havior. Since it is difficult to investigate the effect from
general perspective, it may be instructive to consider an
plicit example of a two-particle system whose density ma
can be explicitly calculated by the Darboux technique.

Consider two spin-1/2 particles described by the Ham
tonian

H5s•a^ 111^ s•b. ~87!

To make the example concrete assume thatubu51 and uau
52. We will start with the non-normalized density matrix

r~0!5
1

2S 51A7 0 0 0

0 52A7 0 0

0 0 51A15 0

0 0 0 52A15

D ,

~88!

which is written in such a basis that

H52sx^ 111^ sz5S 1 2 0 0

2 1 0 0

0 0 21 2

0 0 2 21

D . ~89!
ity
be

rix
ge

n-
-

x-
x

-

Takea55. We find

D55r~0!225r~0!52
1

2S 9 0 0 0

0 9 0 0

0 0 5 0

0 0 0 5

D , ~90!

so that@D5 ,H#50. Takingm5 i we find thatr(0)2 iH has
eigenvaluesz15(11 i )/2, z25(113i )/2, z35(125i )/2,
where z1 has degeneracy 2. The two eigenvectors cor
sponding toz1 are

uw1&5
1

4A2S 0

0

11 iA15

4

D , uw2&5
1

4A2S 231 iA7

4

0

0

D .

~91!

Assuming

uw~0,0!&5
1

A2
~ uw1&1uw2&), ~92!

we obtain

F5~ t !5
1

2
~e5t1e9t!, ~93!

andr@1#(t)5exp@25iHt#rint(t)exp@5iHt# where
r int~ t !

5
1

21
52A7 tanh 2t 0

213i 23A72A152 iA105

8 cosh 2t

27i 13A723A151 iA105

8 cosh 2t

0 51A7 tanh 2t
15i 1A72A152 iA105

8 cosh 2t

A71A15

2 cosh 2t

13i 23A72A151 iA105

8 cosh 2t

215i 1A72A151 iA105

8 cosh 2t
51A15 tanh 2t 0

7i 13A723A152 iA105

8 cosh 2t

A71A15

2 cosh 2t
0 52A15 tanh 2t

2 .

~94!
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Eigenvaluesp6(k), k51, 2, of ~normalized! reduced density
matrices of thekth subsystems are

p6~1!5
1

2
6

A152A7

20
tanh 2t, ~95!

p6~2!5
1

2
6
A2612A105

40 cosh 2t
. ~96!

In order to check that Eq.~86! is indeed satisfied one has
use non-normalized density matrices~since the equation is
nonhomogeneous!, i.e., set Tr1„(Tr 2r)2

…5100@p1(1)2

1p2(1)2#. Average energies of both subsystems are 0
any t, which also agrees with general theorems. The ef
can be eliminated if we begin with one-particle Hartr
HamiltoniansH1(r)5rH11H1r, H2(r)5rH21H2r, and
use the two-particle extension of Hartree Hamiltonians d
cussed in@19,20#. Now the density matrices of the sub
systems as well as this of the composite system would h
time-independent spectra, but the two-particle equa
would not have the form

i ṙ1125@H1^ 111^ H2 ,r112
2 # ~97!

but

i ṙ1125@H1~r1! ^ 111^ H2~r2!,r112#, ~98!

wherer112 , r1 , r2 are density matrices of the composi
system and the two subsystems, respectively. The t
particle Hartree equation~98! cannot be directly solved by
the technique we have developed.

VI. CONCLUSIONS

We have proposed an algebraic technique of solvin
nonlinear operator equation. The equation we have discu
r
ct

-

ve
n

o-

a
ed

can also be regarded as a Heisenberg-picture equatio
motion for an operatorU, since writing it in the form

iU̇ 5@H,U2#5@HU1UH,U#, ~99!

one obtains a nonlinear Heisenberg equation with the tim
dependent Hamiltonian operatorH̃(U)52HU2UH. The
choice of non-HermitianU ~typical of the binary transforma
tion with nÞm̄) leads to non-HermitianH̃, a fact that may
be of interest for a theory of open systems.

Restricting the initial solutionU to projectors (U25U)
we have shown that there exists a linear orbit of the Darb
transformation (U@1#25U@1# and, hence,U@1# is a solu-
tion of the linear LvNE!. This shows incidentally that the
binary transformation can be used to generate solution
the ordinary linear LvNE, a property that may find applic
tions in other contexts.

Looking more closely at the origin of the simultaneo
covariance of both equations constituting the Lax pair, o
can immediately write other Lax pairs whose compatibil
conditions provide new nonlinear Darboux-integrable ope
tor equations. For example, taking the second equation w
V5H2U1HUH1UH2, J5H3, and assuming the con
straintU850 one obtains the compatibility condition

iU̇ 5@H2U1HUH1UH2,U#. ~100!

This highly non-Abelian nonlinear equation can be solved
the binary Darboux transformation in a way similar to th
described above.

ACKNOWLEDGMENTS

Our work was supported by KBN Grant No. 2 P03B 16
15. The work of M.C. was financed in part by Polish-Flemi
Grant No. 007. We thank J. Naudts and M. Kuna for fruitf
discussions.
APPENDIX A: PROOF OF DARBOUX COVARIANCE

We will show that Eq.~23! satisfies

2 i ]c@1#5c@1#~V@1#2lJ! ~A1!

with V@1# given by Eq.~25!:

2 i ]c@1#~l,m,n!5c~l!~V2lJ!F12
n2m

l2m
PG1

n2m

l2m
c~l!@~V2mJ!P2P~V2nJ!1~m2n!PJP#

5c@1#~l,m,n!~V2lJ!1
n2m

l2m
c~l!@2~V2lJ!P1~V2mJ!P2~l2n!PJ1~m2n!PJP#

5c@1#~l,m,n!~V2lJ!1
n2m

l2m
c~l!@~l2m!JP2~l2n!PJ1~m2n!PJP#

5c@1#~l,m,n!~V@1#2lJ!.
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APPENDIX B: EULER-ARNOLD TOP

The equation we have solved is algebraically similar
the so-called Euler-Arnold~EA! equation describing a Lie
algebraic generalization of the classical Euler equatio
Since the method we have developed is purely algebra
can be applied also to the EA top. This Appendix descri
the essential ingredients of the EA formulation.

Consider the classical angular momentum vectorJ and a
moment-of-inertia diagonal matrixI 5diag(I 1 ,I 2 ,I 3). De-
note by r the 333 matrix defined byrkl5 i eklmJm. The
Hamiltonian function of the Euler top isH(J)5J•I 21J/2.

Defining the ‘‘Hamiltonian operator’’ byĤkl5]2H/]Jk]Jl

5dkl /I k one can write the Euler equations as
ys

v.

k-

.
-

s.
it
s

i ṙ5@Ĥ,r2#. ~B1!

Replacinge by structure constants of a general Lie algeb
andH by a more generalHabx

axb, wherex are coordinates
in the Lie algebra, we can generalize Eq.~B1! from the ro-
tation algebra so~3! to other Lie algebras. Such a generaliz
tion of Eq.~B2! is what one terms the EA top. Let the stru
ture constants of the Lie algebra beVabc . The EA equation
corresponds torab5 iVabcx

c. From this definition it is clear
that the EAr is the Lie-Poisson tensor and in the gene
case does not have a density matrix interpretation. For
reason there is no direct physical link between the EA a
our LvN equations. In finite-dimensional Lie algebra, o
can use our gauge transformation~66! to map thisr into a
Hermitian and nonzero-trace matrix.
.
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